Драйвер Управления Шаговым Двигателем

Драйвер Управления Шаговым Двигателем Rating: 9,2/10 3585 reviews

Сразу оговорюсь — все, что здесь далее написано, лишь мои личные выводы и не претендует на абсолютную истину. Истина рождается в споре, так что если уважаемые читатели в чем-то со мной не согласны, давайте это обсудим! Задача построения станка обычно сводится к трем подзадачам — механика, электроника, программное обеспечение.

  1. Драйвер Управления Шаговым Двигателем
  2. Драйвер Управления Биполярным Шаговым Двигателем
  3. Драйвер Управления Шаговым Двигателем
  4. Драйвер Управления Шаговым Двигателем Своими Руками

Видимо и статьи придется писать тоже три. Поскольку у нас журнал всё-таки практической электроники, начну с электроники и чуть-чуть с механики! ПриводНужно двигать собственно фрезер в 3-х направлениях — XYZ, значит нужно 3 привода — 3 мотора с передачей вращения вала двигателя в линейное перемещение. О передаче Для фрезерного станка, где есть боковые усилия резания материала, желательно не применять ременные передачи, очень популярные в 3D принтерах. Буду применять передачу «винт-гайка». Самая бюджетная передача — обычный стальной винт и безлюфтовая, желательно бронзовая, гайка. Более правильная — винт с трапециевидной резьбой и гайка из капролона.

Шаговый двигатель – двигатель со сложной схемой управления, которому требуется специальное электронное устройство – драйвер шагового. Step/Dir контроллер шаговых двигателей. Кот > Схемы > Цифровые устройства > Защита. TB6560 V2 - драйвер управления двухфазными шаговыми двигателями выполнен на специализированном чипе Toshiba TB6560AHQ с питанием 10В – 35В постоянного напряжения, предназначен для использования с двигателями типа NEMA17 – NEMA23 с максимальным током фазы до 3А. Широко используется в ЧПУ системах. Напряжение питания 10В – 35В постоянного напряжения; Оптоизолированные входы сигналов управления; Делитель шага (микрошаг) – 1,2,8,16; Установка максимального тока – 14 ступеней.

Самая хорошая (и, увы, самая дорогая) шарико-винтовая пара, или ШВП. Об этом подробнее я еще расскажу далее У каждой передачи есть свой коэффициент, свой шаг — то есть насколько линейно по оси переместится фрезер за один оборот двигателя, например, на 4 мм. Двигатель (мотор)В качестве двигателя для привода определил шаговый двигатель (ШД) Почему шаговый? Что это вообще такое? Двигатели есть переменного и постоянного тока, коллекторные и бесколлекторные, и так называемые «шаговые». В любом случае нам надо обеспечить какую-то точность позиционирования, например 0,01 мм. Как это сделать?

Если двигатель имеет прямой привод — вал двигателя соединяют напрямую с винтом, то для обеспечения такой точности нужно повернуть его на некоторый угол. В данном случае, при шаге передачи 4 мм и желаемой точности перемещения 0,01 мм это всего 1/400 оборота, или 360/400=0,9 градуса!

Ерунда, возьмем обычный моторчик С «обычным» моторчиком без обратной связи никак не получится. Не вдаваясь в подробности, схема управления двигателем должна «знать», на какой угол повернулась ось. Можно конечно поставить редуктор — потеряем в скорости, и все равно без гарантии, без обратной связи вообще никак! На ось ставится датчик угла поворота. Такое решение надежное, но дорогое. Альтернатива — шаговый двигатель (как он работает, почитайте сами). Можно считать, что за одну «команду» он повернет свою ось на определенный градус, обычно это 1,8 или 0,9 градуса (точность обычно не хуже 5%) — как раз то, что нужно.

Недостаток такого решения — при большой нагрузке двигатель будет пропускать команды — «шаги» и может вообще остановиться. Вопрос решается установкой заведомо мощного двигателя. На шаговых двигателях и делается большинство любительских станочков. Выбираем шаговый двигатель2 обмотки, с минимальным током, минимальной индуктивностью и максимальным моментом — то есть максимально мощный и экономичный двигатель. Противоречивые требования. Малый ток — значит большое сопротивление, значит много витков провода обмотки двигателя, значит большая индуктивность.

А большой момент — это большой ток и много витков. Выбираем в пользу большего тока и меньшей индуктивности. А момент надо выбирать исходя из нагрузки, но об этом потом. Характеристики некоторых двигателей приведены в таблице. Для небольшого станка с рабочим пространством размером 300×300х100 мм и легким фрезером вполне сгодятся двигатели с крутящим моментом 0,3Нм и выше.

Оптимальным является ток от 1,5 до 2,5 Ампер, вполне подойдет FL42STH38-1684 Драйвер шагового двигателя Двигатель есть. Теперь нужен драйвер — переключать напряжение на обмотках двигателя определенным образом, при этом не превышая установленный ток. Самое простое решение — источник заданного тока и две пары транзисторных ключей на каждую обмотку. И четыре защитных диода. И логическая схема чтобы менять направление.

И Такое решение обычно делают на микросхеме ULN2003A для двигателей с малым током, имеет много недостатков, не буду на них останавливаться. Альтернатива — специализированные микросхемы «всё в одном» — с логикой, транзисторами и диодами защиты внутри (или снаружи). А еще такие микросхемы контролируют ток обмоток и регулируют его с помощью ШИМ-а, а так же могут реализовывать режим «полушаг», а некоторые режимы 1/4 шага, и 1/8 шага и т. Д. Эти режимы позволяют повысить точность позиционирования, повысить плавность движения и снизить резонанс. Обычно достаточно режима «полушаг», что позволит повысить теоретическую точность линейного позиционирования (в моем примере до 0,005 мм).

Что внутри микросхемы драйвера шагового двигателя? Блок логики и управления, источники питания, ШИМ со схемами формирования момента и времени коммутации обмоток, выходные ключи на полевых транзисторах, компараторы обратной связи — ток контролируется по падению напряжения на резисторах (Rs) в цепи питания обмоток. Ток двигателя задается опорным напряжением. Для реализации этих функций существуют и другие схемные решения, например, с использованием микроконтроллеров PIC или ATMEGA (опять же с внешними транзисторами и защитными диодами). На мой взгляд, они не обладают значительным преимуществом перед «готовыми» микросхемами и я их в данном проекте использовать не буду. Богатство выбораНа сегодняшний день есть достаточно много различных микросхем и достаточно много уже готовых плат и модулей драйверов ШД.

Можно купить готовый, а можно «изобретать велосипед», тут каждый решает по-своему. Из готовых — наиболее распространённые и недорогие драйверы на микросхемах Allegro A4988 (до 2А), Texas Instruments DRV8825 (до 2,5А).

Поскольку модули изначально разрабатывались для использования в 3D принтерах типа Rep-rap проекта Arduino, они не являются законченными модулями (например, им нужно еще питание логики (+5V), которое подается с так называемой рампы (Ramp). Еще есть решения на DRV8811 (до 1,9 А), A3982 (до 2 А), A3977 (до 2,5 А), DRV8818 (до 2,5 А) DRV8825 (до 2,5 А), Toshiba TB6560 (до 3 А) и другие. Поскольку мне интересно что-то сделать самому, плюс появилась возможность «попробовать на вкус» микросхемы Allegro A3982 и A3977, решил сделать пару драйверов самостоятельно. Готовые решения на A4988 не понравились, прежде всего, из-за миниатюризации размеров печатной платы в ущерб хорошему охлаждению. Типовое сопротивление открытых транзисторов у A4388 при токе 1,5А 0,32+0,43 Ом, плюс 0,1-0,22 Ома «измерительный» резистор — получается около 0,85 Ом. А таких каналов два, и хотя и работают они импульсно, но 2-3 Ватта тепла надо рассеивать. Ну не верю я в многослойную плату и малюсенький радиатор охлаждения — в даташите нарисована плата гораздо больших размеров.

Провода мотора нужно сделать короткими, драйвер устанавливать рядом с двигателем. Существует 2 технических решения в звукотехнике: длинный сигнальный кабель к усилителю + короткие провода к акустической системе, или короткий сигнальный кабель к усилителю + длинные провода, а акустической системе. Оба решения имеют свои плюсы и минусы. С моторами — так же. Я выбрал длинные провода управления и короткие провода к мотору. Управляющие сигналы — «шаг» (step), «направление» (dir), «включение» (enable), индикация состояния сигналов управления. Некоторые схемы не используют сигнал «Enable», но это приводит в режиме простоя к ненужному нагреву и микросхемы и двигателя.

Одно питание 12-24 вольта, источник питания логики (+5B) — на плате. Размеры платы — достаточные для хорошего охлаждения, двухсторонняя печать с большой областью «меди», возможность приклеить на микросхему радиатор (применяемой для охлаждения памяти видеокарт). Драйвер ШД на микросхеме Allegro A3982Основные характеристики и блок-схема.

Проектировал в среде DipTrace. Драйвер A3982 включен по схеме из документации производителя. Включен режим «полушаг».

Драйвер Управления Шаговым Двигателем

Драйвер Управления Шаговым Двигателем

Дополнительно для надежной работы сигналов управления и индикации применил микросхему логики 74НС14 (с триггерами Шмитта). Можно было сделать гальвано-развязку на оптронах, но для маленького станка я решил ее не делать. Схема на A3977 отличается только дополнительными джамперами режима шага и более мощным разъемом питания, пока в «железе» не реализована.

Печатная платаПроцесс изготовления — ЛУТ, двухсторонняя. Габариты 37×37 мм, крепеж — как у двигателей, 31×31 мм.

Здравствуй, читатель! Меня зовут Игорь Котов, мне 44, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

Драйвер Управления Биполярным Шаговым Двигателем

Нам требуется минимум 75.00 € ежемесячно по курсу — только на оплату аренды выделенного сервера, без учёта всех прочих расходов. У меня сейчас трудные времена. Я просто не в состоянии «тянуть» один. Поэтому я был вынужден ввести. Подписка откроет тебе годовой доступ сразу ко всем материалам журнала. Другой путь получить доступ — заяви о себе, опубликуй у нас свои статьи и завоюй признание читатетей, покупай наши киты, сотрудничай! Даташит на микросхему Allegro A3982 ▼ ⚖303,14 Kb ⋅ ⇣50.

Здравствуй, читатель! Меня зовут Игорь Котов, мне 44, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства. Нам требуется минимум 75.00 € ежемесячно по курсу — только на оплату аренды выделенного сервера, без учёта всех прочих расходов. У меня сейчас трудные времена.

Я просто не в состоянии «тянуть» один. Поэтому я был вынужден ввести.

Подписка откроет тебе годовой доступ сразу ко всем материалам журнала. Другой путь получить доступ — заяви о себе, опубликуй у нас свои статьи и завоюй признание читатетей, покупай наши киты, сотрудничай! Ребята оч важный вопрос для меня!!! Хочу собрать свой первый станок ЧПУ для фрезеровки! Из двигателей выбрал Nema 232430 Ток, А: 3 Сопротивление фазы, ом: 1.6 Индуктивность, mH: 6.8 Момент удержания кг.см: 28 Кол-во выводов: 4 Подскажите пожалуйста какой драйвер подойдет а также контроллер?

Я не совсем разбираюсь во всех данных микросхем и механики (вольты, амперыы и тд) и решил что для данного ШД подойдет А4988 с CNC Шилдом и на базе Arduino uno. И еще один вопрос: если двигатель с током на 3 ампера а драйвер до 2 Ампер то двигатель будет работать или нет? Не совсем разбираюсь в совместимостях этих показателей! Кому не сложно ответье пожалуйста.

На колодки Vin подаётся напряжение 4,5–25 В постоянного тока. Для питания двигателя рекомендуется использовать отдельный контур питания, не связанный с цепью питания управляющего контроллера. К примеру, если вы используете Arduino, не рекомендуется использовать питание с пина 5V Arduino.

Это может привести к перезагрузке управляющего контроллера, или к перегрузке регулятора напряжения Arduino. В некоторых случаях допускается использовать для питания шагового двигателя пин Vin Arduino.

Например, если Arduino запитана от мощного внешнего источника питания 7–12 В, напряжение которого при включении двигателя не падает ниже 7 В. Контакты подключения 3-проводного шлейфа.

Драйвер Управления Шаговым Двигателем

Высокий уровень на этом пине включает подачу напряжения на двигатель. При остановке шагового двигателя в определённом положении, питание продолжает поступать на его управляющую обмотку. Это приводит к нагреву шагового двигателя и излишнему расходу электроэнергии. Чтобы отключить подачу питания на двигатель, достаточно выставить низкий уровень напряжения на этом контакте. При остановке двигателя бывает полезно подать на этот контакт.

Драйвер Управления Шаговым Двигателем Своими Руками

Это позволит оставить на двигателе небольшое усилие, необходимое для удержания вала в текущем положении. Электроэнергии в таком случае будет тратится значительно меньше. Если нет необходимости управлять включением двигателя, вы можете не подключать этот контакт к микроконтроллеру. Тогда ток через обмотки двигателя будет течь всегда, если есть напряжение питания. Индикатор вращения двигателя.